Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 6270, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491127

RESUMO

ALYREF is considered as a specific mRNA m5C-binding protein which recognizes m5C sites in RNA and facilitates the export of RNA from the nucleus to the cytoplasm. Expressed in various tissues and highly involved in the transcriptional regulation, ALYREF has the potential to become a novel diagnostic marker and therapeutic target for cancer patients. However, few studies focused on its function during carcinogenesis and progress. In order to explore the role of ALYREF on tumorigenesis, TCGA and GTEx databases were used to investigate the relationship of ALYREF to pan-cancer. We found that ALYREF was highly expressed in majority of cancer types and that elevated expression level was positively associated with poor prognosis in many cancers. GO and KEGG analysis showed that ALYREF to be essential in regulating the cell cycle and gene mismatch repair in tumor progression. The correlation analysis of tumor heterogeneity indicated that ALYREF could be specially correlated to the tumor stemness in stomach adenocarcinoma (STAD). Furthermore, we investigate the potential function of ALYREF on gastric carcinogenesis. Prognostic analysis of different molecular subtypes of gastric cancer (GC) unfolded that high ALYREF expression leads to poor prognosis in certain subtypes of GC. Finally, enrichment analysis revealed that ALYREF-related genes possess the function of regulating cell cycle and apoptosis that cause further influences in GC tumor progression. For further verification, we knocked down the expression of ALYREF by siRNA in GC cell line AGS. Knockdown of ALYREF distinctly contributed to inhibition of GC cell proliferation. Moreover, it is observed that knocked-down of ALYREF induced AGS cells arrested in G1 phase and increased cell apoptosis. Our findings highlighted the essential function of ALYREF in tumorigenesis and revealed the specific contribution of ALYREF to gastric carcinogenesis through pan-cancer analysis and biological experiments.


Assuntos
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/patologia , Prognóstico , Biomarcadores Tumorais/genética , RNA Interferente Pequeno , Carcinogênese/genética , Linhagem Celular Tumoral , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Ligação a RNA
2.
Cell Mol Biol (Noisy-le-grand) ; 70(1): 110-118, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38372104

RESUMO

The salivary gland (SGS) is a kind of organ vulnerable to ionizing radiation. Radiotherapy is an important treatment for head and neck tumors, but in the process of radiotherapy, tumor cells will be injured by radiation to a certain extent. Infrared-induced DNA double-strand break (IR-DSBs) is one of the most serious DNA damage. DNA repair proteins such as Nymegan rupture syndrome protein 1 (NBS1) play a key role in the identification and repair of DNA damage. but the interaction between SSB1 and NBS1 has not been elucidated. In this study, we irradiated rat submandibular gland (SMG) cells, which were either infected with a rAdE5-SSB1-1p2-shRNA recombinant adenovirus to silence SSB or a control virus, to explore the effect of IR on the expression NBS1 in the absence of SSB. Our results showed that the SSB1 mRNA transcripts and protein expression of SSB1 and NBS1 initially increased and decreased later with increased doses. The relative expression reached the highest levels when the SMG cells were irradiated with 2Gy of IR. Silencing the SSB1 gene suppressed the expression of both SSB1 and NBS1 regardless of irradiation. The expression of NBS1 decreased when the SSB1 gene was silenced. We concluded that IR affected the expression of both SSB1 and NBS1 and there is a synergistic effect on IR-induced NBS1 suppression and DSBs repair in SMG cells. These observations shed light on further investigation and elucidation of IR-caused DNA repair mechanisms.


Assuntos
Proteínas de Ciclo Celular , Proteínas Nucleares , Glândula Submandibular , Animais , Ratos , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Dano ao DNA , Reparo do DNA/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Glândula Submandibular/metabolismo
3.
Bioresour Technol ; 381: 129123, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37146694

RESUMO

Two-phase anaerobic digestion (AD) is a promising technology, but its performance is sensitive to methanogen. In this study, the effect of cobalt (Co) on two-phase AD was investigated and the enhanced mechanism was revealed. Though no obvious effect of Co2+ was observed in acidogenic phase, the activity of methanogens was significantly affected by Co2+ with an optimal Co2+ concentration of 2.0 mg/L. Ethylenediamine-N'-disuccinic acid (EDDS) was the most effective for improving Co bioavailability and increasing methane production. The role of Co-EDDS in improving methanogenic phase was also verified by operating three reactors for two months. The Co-EDDS supplement increased the level of Vitamin B12 (VB12) and coenzyme F420, and enriched Methanofollis and Methanosarcina, thereby successfully improving methane production and accelerating reactor recovery from ammonium and acid wastewater treatment. This study provides a promising approach to improve the efficiency and stability of anaerobic digester.


Assuntos
Reatores Biológicos , Cobalto , Anaerobiose , Metano , Methanosarcina
4.
Water Res ; 225: 119112, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36166999

RESUMO

A single-stage intermittent aeration microaerobic reactor (IAMR) has been developed for the cost-effective nitrogen removal from piggery wastewater with a low ratio of chemical oxygen demand (COD) to total nitrogen (TN). In this study, a quantified nitrogen metabolic network was constructed based on the metagenomics, reaction kinetics and mathematical model to provide a revealing insight into the nitrogen removal mechanism in the IAMR. Metagenomics revealed that a complex nitrogen metabolic network, including aerobic ammonia and nitrite oxidation, anammox, denitrification via nitrate and nitrite, and nitrate respiration, existed in the IAMR. A novel method for solving kinetic parameters with high stability was developed based on a genetic algorithm. Use this method to calculate the kinetics of various reactions involved in nitrogen metabolism. Kinetics revealed that simultaneous partial nitritation-anammox (PN/A) and partial denitrification-anammox (PDN/A) were the dominant approaches to nitrogen removal in the IAMR. Finally, a kinetics-based model was proposed for quantitatively describing the nitrogen metabolic network under the limitation of COD. 58% ∼ 67% of nitrogen was removed via the anammox-based processes (PN/A and PDN/A), but only 7% ∼ 12% and 1% ∼ 2% of nitrogen were removed via heterotrophic denitrification of nitrite and nitrate, respectively. The half-inhibition constant of dissolved oxygen (DO) on anammox was simulated as 0.37 ∼ 0.60 mg L-1, filling the gap in quantifying DO inhibition on anammox. High-frequency intermittent aeration was identified as the crucial measure to suppress nitrite-oxidizing bacteria, although it has a high affinity for DO and NO2--N. In continuous aeration mode, the simulated NO3--N in the IAMR would rise by 39.6%. The research provides a novel insight into the nitrogen removal mechanism in single-stage microaerobic systems and provides a reliable approach to practicing PN/A and PDN/A for cost-effective nitrogen removal.


Assuntos
Nitrogênio , Águas Residuárias , Desnitrificação , Análise da Demanda Biológica de Oxigênio , Reatores Biológicos/microbiologia , Amônia , Esgotos , Cinética , Nitritos , Nitratos , Dióxido de Nitrogênio , Oxirredução , Modelos Teóricos , Redes e Vias Metabólicas , Oxigênio
5.
Artigo em Inglês | MEDLINE | ID: mdl-35576507

RESUMO

Noble metal nanozymes have shown great promise in biomedicine; however, developing novel and high-performance noble metal nanozymes is still highly pressing and challenging. Herein, we, for the first time, prepared two-dimensional (2D) Pd@Ir bimetal nanosheets (NSs) with well-defined size and composition by a facile seed-mediated growth strategy. Enzyme-mimicked investigations find that the Pd@Ir NSs possess oxidase (OXD)-, peroxidase (POD)-, and catalase (CAT)-like multienzyme-mimetic activities. Especially, they exhibited much higher OXD- and POD-like activities than individual Pd NSs and Ir nanoparticles (NPs). The density functional theory (DFT) calculations reveal that the adsorption energy of O2 on Pd@Ir NSs is lower than that on the pure Pd NSs, which is more favorable for the conversion of O2 molecules from the triplet state (3O2) into the singlet state (1O2). Finally, based on the outstanding nanozyme activities to yield highly active singlet oxygen (1O2) and hydroxyl radicals (•OH) as well as excellent biosafety, the as-prepared Pd@Ir NSs were applied to treat bacteria-infected wounds, and satisfactory therapeutic outcomes were achieved. We believe that the highly efficient 2D Pd@Ir nanozyme will be an effective therapeutic reagent for various biomedical applications.

6.
Bioresour Technol ; 345: 126494, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34883191

RESUMO

A novel combined sequencing batch reactor (SBR) - up-flow microaerobic sludge reactor (UMSR) process was developed to treat manure-free piggery wastewater characterized by low COD/TN ratio and high NH4+-N. The front-end SBR was designed to get an effluent with COD/TN ≤ 1 by removing COD, allowing the back-end UMSR to practice anammox for the simultaneous removal of TN and NH4+-N. Fed with the raw piggery wastewater, the combined SBR-UMSR process was started up at 27℃ with a reflux ratio of 15:1 in the UMSR. After 230-days running, the removal of COD, TN, and NH4+-N in the combined SBR-UMSR process reached 78.41%,85.05%, and 92.21%, respectively. 50.22% of COD in the wastewater was removed in the SBR, while 87.11% of NH4+-N and 79.69% of TN were removed in the UMSR. Stoichiometry and bacterial function analysis revealed that the partial nitrification - anammox process was the dominant nitrogen removal approach in the UMSR.


Assuntos
Nitrogênio , Águas Residuárias , Oxidação Anaeróbia da Amônia , Reatores Biológicos , Desnitrificação , Esterco , Nitrogênio/análise , Eliminação de Resíduos Líquidos
7.
Sci Total Environ ; 800: 149413, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34384968

RESUMO

N-acyl-homoserine lactones (AHLs)-mediated quorum sensing (QS) has been reported as the inducers of microbial social behaviors in anaerobic digestion (AD) processes. However, it is not well understood that how to intentionally change the secretion of AHLs by conventional engineering control such as the regulation of alkalinity. The present research investigated the effect of endogenous AHLs-mediated QS on the microbial social behaviors in an upflow anaerobic sludge bed (UASB) reactor with the influent alkalinity decreased from 2800 mg/L to 700 mg/L by stages. The results showed that the alkalinity of 1800-2200 mg/L was more favorable for the AD in the UASB, with an excellent specific methanogenic activity (SMA) and better microbial aggregation statuses. The alkalinity out of the favorable alkalinity range would decrease the SMA with the accumulation of VFAs in the reactor. It was found that signal molecule C4-HSL was always the dominant AHL in the UASB along with the decrease of influent alkalinity, while 3-oxo-C6-HSL, 3-oxo-C12-HSL and C14-HSL were remarkably improved only within the favorable range of alkalinity. Pearson correlation concluded that the dominant signal molecule C4-HSL was the specific AHL in enhancing the synthesis of extracellular polysaccharide and the metabolism of acidogens. The co-occurrence network revealed that Mesotoga, Sulfurospirillum and Methanoregula were the key hubs in the microbial interaction network, and the AHLs-mediated QS indirectly facilitated the methanogenic metabolism. The present work provided a revealing insight into the effect of AHLs-mediated QS on the microbial social behaviors in AD process with the regulation of alkalinity.


Assuntos
Acil-Butirolactonas , Percepção de Quorum , Bactérias , Esgotos , Comportamento Social
8.
Bioresour Technol ; 337: 125360, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34116282

RESUMO

Performance of anaerobic sludge and microbial social behaviors in an expanded granular sludge bed (EGSB) were evaluated by increasing reflux ratio from 50% to 500% stage by stage, with a constant influent chemical oxygen demand (COD) of 5500 mg/L at hydraulic retention time 12 h. The results indicated that the reflux ratio of 100% - 200% was more favorable for the EGSB with a methane production of 2.4 m3/m3·d. It was found that acyl-homoserine lactones (AHLs)-mediated quorum sensing (QS) could balance various microbial populations in the anaerobic digestion process. C4-HSL and C8-HSL were identified as the specific AHLs in enhancing granulation of anaerobic sludge by stimulating protein secretion into extracellular polymeric substances (EPS). 3-oxo-C6-HSL and 3-oxo-C14-HSL were verified for the enhancement of methanogenesis. The present study showed a novel perspective on the performance of EGSB with reflux ratios based on the AHLs-mediated QS.


Assuntos
Acil-Butirolactonas , Esgotos , Anaerobiose , Percepção de Quorum , Comportamento Social
9.
Sci Total Environ ; 774: 144925, 2021 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-33610988

RESUMO

Characterized by high ammonium (NH4+ - N) and low ratio of chemical oxygen demand (COD) to total nitrogen (COD/TN), discharge of piggery wastewater has been identified as a primary pollution source resulting in water eutrophication. An improved microaerobic reactor, internal aerating microaerobic reactor (IAMR), was constructed to treat manure-free piggery wastewater without effluent recycle at dissolved oxygen of 0.3 mg/L and 32 °C. A removal rate of COD, NH4+ - N and TN averaged 77.9%, 94.6% and 82.6% was obtained in the reactor, with the concentration of 258.5, 235.5 and 335.2 mg/L in influent, respectively. 16S rDNA amplicon sequencing, carbon and nitrogen mass balance and stoichiometry indicated that heterotrophic nitrification-anammox was the dominant approach to nitrogen removal. Microbiome phenotypes showed that aerobic bacteria were the dominant microorganisms, and the microbiome oxidative stress tolerance was intensified along with the continuous operation of the IAMR, resulting in the survival of various facultative and anaerobic bacteria for nutrients removal. With the good nutrients removal, less energy consumption, and high tolerance to influent fluctuation, the improved IAMR was confirmed as a promising process for treating wastewater with high NH4+ - N and low COD/TN.


Assuntos
Nitrogênio , Águas Residuárias , Reatores Biológicos , Desnitrificação , Nitrogênio/análise , Eliminação de Resíduos Líquidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...